1/2=-16x^2+16x+480

Simple and best practice solution for 1/2=-16x^2+16x+480 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2=-16x^2+16x+480 equation:



1/2=-16x^2+16x+480
We move all terms to the left:
1/2-(-16x^2+16x+480)=0
We get rid of parentheses
16x^2-16x-480+1/2=0
We multiply all the terms by the denominator
16x^2*2-16x*2+1-480*2=0
We add all the numbers together, and all the variables
16x^2*2-16x*2-959=0
Wy multiply elements
32x^2-32x-959=0
a = 32; b = -32; c = -959;
Δ = b2-4ac
Δ = -322-4·32·(-959)
Δ = 123776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{123776}=\sqrt{64*1934}=\sqrt{64}*\sqrt{1934}=8\sqrt{1934}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{1934}}{2*32}=\frac{32-8\sqrt{1934}}{64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{1934}}{2*32}=\frac{32+8\sqrt{1934}}{64} $

See similar equations:

| 3x-10=5x+5 | | z+3/8=6 | | -40=-10-6x | | 6(0)-2y=-8 | | 9y’’-30y’+25y=0 | | 8=2(x+5) | | 3x+11/2=x-4 | | 2(x-4)÷3=8 | | 2y-6(0)=-8 | | 2y-6(-1)=-8 | | 1X-2y=180 | | -1901=y/35=y-1969 | | 55+8x=85 | | 0.5y=30.50.5y=6 | | k/6=15 | | X-2y=180° | | c+13=51 | | 13,3+1h=1,3-1h | | -8x-2=-4 | | 48x+96=64-32x | | 2y-6(-2)=-8 | | 4x-8=3x-+ | | 4(3x+7)=12x-2 | | 7x+5=x+3 | | .5×-6=-6+.5x | | 7x+5=x+4 | | 5c+40+c+3=0 | | -5(n+6)-2=0 | | 3x^2−7x−13=7 | | 3^(2t-8)=12 | | y÷3=11 | | 4(x+3)-5=27+9x |

Equations solver categories